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Multiscale Formalism for Correlation Functions of
Fermions. Infrared Analysis of the Tridimensional
Gross�Neveu Model

Emmanuel Pereira,1 Aldo Procacci,2 and Michael O'Carroll1

Received July 17, 1998; final December 1, 1998

We present a multiscale formalism for fermionic systems (with a smooth UV
cutoff ) establishing a trivial link between the correlation functions and the effec-
tive potential flow, and study the k-point truncated functions of the tridimen-
sional Gross�Neveu model. A new efficient method is used to bound these
correlation functions and show polynomial tree decay for long distances. We are
guided by a block lattice mechanism with a property of orthogonality between
terms in different scales, which leads to simple formulas for the correlations.
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sional Gross�Neveu model.

1. INTRODUCTION

Problems with many scales of length have been rigorously studied via
renormalization group (RG) methods for a long time: bosonic theories
such as 84

4 [GK1], the dipole gas [BY, GK2], classical Heisenberg model
[B], fermionic systems such as Gross�Neveu [FMRS, GK3] and Fermi-
liquids [BG1, BGPS, FMRT, FST] are well-known examples. According
to the approach and the model, several techniques have been developed
and used within the RG mechanism, such as polymer and tree expansions,
small and large field analysis, etc., involving always intricate propositions,
sometimes hard to prove.
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In particular, the correlation functions of such systems have been also
treated via the RG method [BGPS, BO, DH, FMRS, GK4, IM, MS],
considered the ``next problem'' after controlling the effective action flow,
and usually requiring a more considerable effort, in spite of the elaborate
analysis already presented in the action flow study.

Recently, having in mind the search for simplifications in the treat-
ment of correlation functions, we studied the well-known lattice dipole gas
[OP, PO]. We noted the association of the block RG formalism carefully
developed in [GK1] (Wilson�Kadanoff RG) with a free propagator
decomposition with a property of orthogonality between terms on different
scales, and this property allowed us to establish a trivial link between the
potential flow and the correlation functions. In short, the Wilson�Kadanoff
RG appeared as an effective tool for the study of correlation functions of
these bosonic models. In [P, PP2] we derive (using, say, a non standard
block RG) a lattice mechanism for fermionic systems with similar proper-
ties. Here, and throughout this paper, for fermionic systems we mean
fermions with the interaction given by a quadratic term with a derivative
plus perturbations, such as in a wide class of models: Gross�Neveu, Fermi-
liquids, etc.

In the present article, using the lattice block formalism as a guide,
we extend our mechanism to obtain a representation for the correlation
functions of fermions using a standard RG (presented, e.g., in [BG1, 2],
[BGPS], and references there in), without the orthogonality property but
avoiding some technical problems of the block transformation. We also
establish and control (infrared analysis) all the k-point truncated correla-
tion functions of the tridimensional Gross�Neveu model.

In our representation the truncated k-point function has the general
structure of summed perturbation theory, i.e., a blob with k propagators
attached. In the tridimensional Gross�Neveu model considered here, in the
limit of an infinite number of RG transformations, the blob is given by
k-field derivatives of the effective potential at zero field and the propagators
behave like free ones for large distances, up to the factor of a wavefunction
renormalization.

We give a new method for bounding the correlation functions and
establishing decay. We use a previously obtained multi-scale representation
of the effective potential (see [PP1]) with a pointwise bound of the kernel
of the kth field derivative (the blob in the correlation function). The kernels
of the k-derivative are bounded by a sum of tree terms each of which is
pointwise bounded. We then bound a tree term of the correlation function
in a manner similar to the bounding of a term in the Born expansion of
non-relativistic quantum mechanical potential scattering.
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To understand why we need a multi-scale scheme to solve the problem
proposed in the present paper, we make some comments. Roughly speak-
ing, the tridimensional Gross�Neveu can be viewed as a sort of fermionic
version of the dipole gas in d�2 dimensions. The latter is a very studied
problem of statistical mechanics (including rigorous RG analysis [BY, DH,
GK2, PO]), consisting in a gas of classical particles interacting through a
two-body stable but not absolutely integrable potential. The rigorous RG
analysis of the dipole gas is performed, in general, by mapping the model
(through a Sine�Gordon transformation) into a bosonic field theory. The
action of this bosonic model is given by a kinetic marginal term plus a
small irrelevant perturbation: the relevant mass term cannot be generated
in the RG flow due to the symmetry of the initial action (its dependence
on derivative fields). Hence, the parallel with our model: the action of our
fermionic Gross�Neveu model has also the structure of a kinetic marginal
term plus an irrelevant (quartic) perturbation, and the relevant mass term
cannot be generated during the RG flow because of the symmetry proper-
ties of the initial action. Thus, as in the case of the dipole gas, to obtain
some rigorous results such as the absolute convergence of the perturbative
expansion in * (uniform in the volume 4) for the pressure, effective poten-
tial kernels, etc. a treatment involving just one step integration (all scales
at once) does not work, unless one is able to exploit suitable cancellations
without introducing dangerous combinatorial factors. Due to the difficulty
of the latter task, a direct proof of the analicity of the pressure for the
dipole gas is still missing. In relation to our fermionic model, the
machinery of the scale per scale RG analysis (and the consequent resum-
mation) provides the standard (and, as far as we know, unique) tool to
handle these kind of cancellations.

We emphasize that, although analyzing a simple model (with canoni-
cal decay, and just one relevant parameter) we present here a general
approach for the study of correlation functions. In fact, we expect to use a
similar formalism in the study of more complicated models, even those with
non-canonical scaling: the one-dimensional Fermi-liquid (with non-canoni-
cal scaling), for instance, has been controlled in [BGPS] by a RG for-
malism where the renormalization of the propagator, at each RG step, is
carried out after manipulations similar to those considered in the study of
our effective potential [PP1]. However, in [BGPS], only the two-point
function has been treated.

The article is organized as follows. In Section 2 we derive the for-
malism for the correlations using a more standard RG (with a smooth
regularization). Section 3 is devoted to the infrared analysis of the k-point
truncated functions for the tridimensional Gross�Neveu model.
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2. THE FORMALISM FOR GENERATING AND
CORRELATION FUNCTIONS

The fermionic multiscale mechanism to be presented here is inspired on
the block spin lattice formalism for fermions [PP2, P], which, say, mimics
the bosonic representation [OP, PO], where suitable structures naturally
appear with the RG applications. In these previous works, we show that
properly using specific block RG transformations, we can write the generat-
ing function (for some models) in terms of a ``local'' effective action (which
goes, say, to a Gaussian fixed point), a ``small'' irrelevant perturbative
potential, and two new propagators (denoted by P� n and G� n) written as a
sum of massive interactions, living in different momentum scales.

The usefulness and simplicity of the representation described there
[PP2, P, OP, PO] must be emphasized: for the two point function the
dominant term is isolated in P� n , and the formulas for the 2k point trun-
cated functions are given by field derivatives of the ``irrelevant'' effective
potential at zero field in a combination with G� n . Due to the orthogonality
property there is no mix between scales, which makes simple the expres-
sions of P� n and G� n , with long distance behavior depending only on the
flow of the running coupling constants, thus establishing a trivial link
between the effective potential and the correlation function theory for these
lattice systems.

However, the treatment of fermions on a lattice involves some
obstacles: the block RG, for instance, due to the average over blocks,
carries technical difficulties such as the lack of translational invariance of
several operators into the structure of the effective potential, leading to an
extra work in the RG flow analysis. For those reasons, fermions have been
mostly treated with smooth cuttoffs, avoiding the lattice and the block RG
[BG1, BGPS, FMRT, GK3]. Thus, the search of a good representation
for the correlation functions within this scenario (continuum approach and
smooth RG) becomes an interesting problem.

That is our aim now: we will extend the block spin formalism [PP2]
to the continuum case. The basic structure will be preserved but the
orthogonality property will be lost, leading to extra analytical work to
bound the operators corresponding to P� n and G� n (fortunately, not so hard
due to the asymptotic freedom of the tridimensional Gross�Neveu model in
the IR sector).

For the action (from now on, restricting our attention to the tridimen-
sional Gross�Neveu model) we take H=H0+V0 , with

H0=|
4

dx �� (x)(i�3 (�0)�)(x), V0=* |
4

[�� (x) �(x)]2 dx (2.1)
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where x # 4/R2+1, 4 a periodic box, �% =�+ �+#+, #+ are 4_4 anti-her-
mitian matrices satisfying #+#&+#&#+=&2$+&. The Grassmann fields �� (x),
�(x) (with supressed spinor indices :=1, 2, 3, 4; number of colours N=1)
are defined as �(x)=�p �� ( p) eipx, with p assuming discrete values (4 is a
periodic box), and so, the system has a countable number of Grassmann
variables (finite number if one still considers | p| bounded). Anyway, we
keep the notation considering integrals over p. The free propagator, with a
smooth UV cutoff, is given by

[i�3 (�0)]
&1 (x& y)= g(�0)(x& y)=

1
(2?)3 | d 3p eip(x& y) p3

p2 e&p2
(2.2)

or in terms of an IR and UV regularized covariance

g(�0)(x& y)= lim
M � �

g(M, 0)(x& y)

= lim
M � �

1
(2?)3 | d 3p eip(x& y) p3

p2 [e&p2
&e&L2Mp2

] (2.3)

The notation (�0), which shall be clear ahead, means that there is an UV
cutoff at scale L0. We have

| g(�0)(x& y)|�
c

1+|x& y|2 (2.4)

(where the bound is, here and throughout the paper, for each term of the
4_4 matrix related to the spinor indices :).

The multiscale formalism starts with the standard multiscale decom-
position

g(�0)(x& y)= :
�

j=0

g j (x& y) (2.5)

where

gj (x& y)=|
d 3p

(2?)3

(e&L2jp2
&e&L2j+2p2

)
p2 p3 e ip(x& y) (2.6)

a (translational invariant) massive multiscale decomposition, since

gj (x)=L&2jC(L& jx), C(x)=|
d 3p

(2?)3

(e&p 2
&e&L2p2

)
p2 p3 eip } x

|C(x)|�const. exp[&; |x|] (2.7)
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(L>1, ; a positive constant) and so

| gj (x)|�const. L&2j exp[&;L& j |x| ] (2.8)

This expression is similar to (2.10) in [PP2], with gj (now, translational
invariant) corresponding to 1� j=Mj 1jM -

j (not translational invariant).
With this decomposition the normalized Gaussian measure

P(�0)(d�)=
>x # 4 d�� x d�x e&�4 dx �� x(i�3 (�0)) �x

� >x # 4 d�� x d�x e&�4 dx �� x(i�3 (�0)) �x
(2.9)

(with covariance g(�0)(x& y)) may be written as

P(�0)(d�)= `
�

j=0

P(d� j), �(�0)= :
�

j=0

�j (2.10)

or, in a regularized version, P(M, 0)(d�)=>M
j=0 P(d�j), �(M, 0)=�M

j=0 �j ,
with �j (and �� j) Grassmann independent fields, P(d�j) a Gaussian fermionic
measure with covariance gj (x& y). Analagously, P(d�(� j )) will indicate
the Gaussian measure with covariance g(� j )(x& y)=��

k= j gk(x& y)
acting on �(� j )=��

k= j �k . Note the parallel between the smooth and the
block formalism: the j th scale fields �j and �� j in (2.10) correspond to the
fields Mj Q`j and �̀ j Q-M -

j in (3.11) in [PP2]; and the massive interaction
in the j th scale expressed in the smooth RG by the measure P(d�j), with
covariance gj , in the block RG corresponds to the integration with
covariance 1� j , i.e.,

| P(d� j) f (�� j , �j) W
� d �̀ j d`j exp[& �̀ jQ-D jQ`j] f ( �̀ jQ-M -

j , MjQ`j)
(numerator with f=1)

We remark that, as gj (0)=0, everything goes as if [�� �]2 (in the effec-
tive potential) were Wick ordered.

Now we derive the correlation function formulas using this multiscale
decomposition. We can start with the more regularized expressions above
(with the cutoff M ) and take the limit M � � later. But, as in our further
analysis the bounds will be uniform on M, and we will drop M from the
notation.

The generating function is given by

Z(h, h� )=| Pb0
(d�) exp[&V0(�, �� )+h� �+�� h] (2.11)
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�=�(�0) , Pb0
(d�) meaning a Gaussian fermionic measure with covariance

b&1
0 g (�0)(x& y). Now we follow the same procedures adopted to construct

the block formalism in [PP2]. We start the first RG step writing �(�0)=
�(�1)+�0 and Pb0

(d�(�0))=Pb0
(d�(�1)) Pb0

(d�0), and so,

Z(h, h� )=c | Pb0
(d� (�1)) Pb0

(d�0) exp[h� �(�1)+�� (�1)h+h� �0+�� 0 h]

_exp[&V0(�(�1)+�0 ,...)] (2.12)

With the shift �0 � �0+b&1
0 g0h, �� 0 � �� 0+b&1

0 h� g0 , we get

Z(h, h� )=exp[b&1
0 h� g0h] c | Pb0

(d�(�1)) Pb0
(d�0) exp[h� �(�1)+�� (�1)h]

_exp[&V0(�(�1)+�0+b&1
0 g0h,...)]

where h� g0h means � dx dy h� (x) g0(x& y) h( y). After defining V1 as

exp[&V1(�(�1)+b&1
0 g0h, �� (�1)+b&1

0 h� g0)]

=| Pb0
(d�0) exp[&V0(�(�1)+�0+b&1

0 g0h,...)] (2.13)

we extract the marginal quadratic term

V1(/, /� )=V� 1(/, /� )+$b0/� D/ (2.14)

with /=�(�1)+b&1
0 g0h, D=i�3 . Hence,

$b0/� D/=$b0[(�� (�1)+b&1
0 h� g0) D(�(�1)+b&1

0 g0h)]

=$b0 �� (�1) D� (�1)+$b0 b&2
0 h� g0 Dg0h

+$b0b&1
0 �� (�1) Dg0h+$b0b&1

0 h� g0 D�(�1)

If we had the orthogonality property (as in the block RG) we would get
the simplifications

g0 Dg0= g0 , �� (�1) Dg0h=h� g0 D�(�1)=0
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Anyway, the generating functions becomes

Z(h, h� )=exp[b&1
0 h� (g0&$b0b&1

0 g0 Dg0) h]

_| Pb0
(d� (�1)) exp[&$b0�� (�1) D�(�1)]

_exp[h� (1&$b0b&1
0 g0 D) �(�1)+�� (�1)(1&$b0b&1

0 Dg0) h]

_exp[&V� 1(�(�1)+b&1
0 g0h,...)]

We define (note that g0 and D are odd functions, translational invariant,
and so g0D=Dg0)

Q0=1, Q1=1&$b0b&1
0 g0 D, G1=b&1

0 g0 ,

P1=b&1
0 g0&$b0b&2

0 g0 Dg0=G1Q1 (2.15)

In the case with the orthogonality property [PP2], P1=b&1
0 g0&$b0 b&2

0 g0

=# (1)
1 g0 , since (for such case) g0 Dg0= g0 . There, the operators Gn and Pn

have a similar structure, written as a sum of the propagators 1j (however,
with different coefficients). Here, such formulas will not be possible, but we
still try to make explicit Gn and write Pn in terms of it. Another delicate
point is the wavefunction renormalization. In the block RG formalism this
process is automatic [PP2]: $bk /� D/ automatically gives $bk !� k Dk!k

(!k , !� k are the fields at scale k, and Dk the effective free action). But, unfor-
tunately, it does not happen now. That is, we cannot write Pb0

(d�(�1)) exp
[&$b0�� (�1) D�(�1)] as Pb1

(d� (�2)) Pb1
(d�1). However, as described in

[BGPS], we may write

Pb0
(d�(�1)) exp[&$b0�� (�1) D�(�1)]=N$Pb1

(d�(�2)) P� b1
(d�1)

where P� b1
, calculated below, behaves (for long distances) as Pb1

. Let us
show it. For the Fourier transform of the covariance [b0 i�3 (�1)+$b0 i�3 ]&1

we have [b0 exp[L2p2]+$b0]&1 p3 �p2 and

[b0eL2p 2
+$b0]&1

=
1

b1

e&L4p2
+

1
b1

[e&L2p2
&e&L4p2

]+
1
b1

$b0 _e&L2p 2
&e&2L2p2

b0+$b0e&L2p2 & (2.16)

where b1=b0+$b0 . Hence,

[b0 i�3 (�1)+$b0 i�3 ]&1 (x& y)

=
1

b1

g(�2)(x& y)+
1

b1

[ g1(x& y)+r1(x& y)] (2.17)
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where

r1(x& y)=$b0 |
d 3p

(2?)3 eip(x& y) p3
p2

e&L2p2
&e&2L2p2

b0+$b0 e&L2p2 (2.18)

and, defining g~ 1(x& y)= g1(x& y)+r1(x& y), we still keep the bound

| g~ 1(x& y)|�const. L&2 } 1 exp[&;L&1 |x& y|] (2.19)

(;>0) if $b0 small enough (to avoid a pole in the expression of r1 above;
in fact, for the model to be analyzed here we show in [PP1] that
$b0=O(*2)).

Thus, returning to the generating function, we have

Z(h, h� )=exp[h� P1h] c | Pb1
(d�(�2)) P� b1

(d�1)

_exp[h� Q1�(�1)+�� (�1) Q1h] exp[&V� 1(�(�1)+G1 h,...)]

(2.20)

To make clear the representation, let us perform also the second RG
step in details. We start, again, separating �1 and making the shift
�1 � �1+b&1

1 g~ 1 Q1h (similarly for �� 1). Hence,

Z(h, h� )=exp[h� P1h] c | Pb1
(d�(�2)) P� b1

(d�1)

_exp[b&1
1 h� Q1 g~ 1Q1h+h� Q1�(�2)+�� (�2)Q1h]

_exp[&V� 1(�(�2)+G1h+b&1
1 g~ 1Q1h+�1 ,...)]

where we have used that Q1(x& y) is even. We define

G2=G1+b&1
1 g~ 1 Q1 (2.21)

exp[&V2(�(�2)+G2h,...)]=| P� b1
(d�1) exp[&V� 1(�(�2)+�1+G2h,...)]

(2.22)

and separate in V2 the marginal quadratic part V2(/, /� )=$b1 /� D/+
V� 2(/, /� ), with /=�(�2)+G2h, /� =�� (�2)+h� G2 ,

/� D/=(�� (�2)+h� G2) D(�(�2)+G2h)

=�� (�2) D�(�2)+h� G2 DG2h+h� G2 D� (�2)+�� (�2) DG2h
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(for the block RG, the crossed terms above vanish and G2 DG2 does not
mix the scales, i.e., it is written as a sum of g0 and g~ 1 without a product
term). The generating function becomes

Z(h, h� )=exp[h� (P1+b&1
1 Q1 g~ 1Q1&$b1G2 DG2) h]

_c | Pb1
(d�(�2)) exp[&$b1�� (�2) D�(�2)+h� Q1�(�2)+�� (�2)Q1h]

_exp[&$b1h� G2 D�(�2)&$b1�(�2) DG2h]

_exp[&V� 2(�(�2)+G2h,...)]

Let us define

Q2=Q1&$b1G2 D, P2=P1+b&1
1 Q1g~ 1Q1&$b1G2 DG2 (2.23)

Thus,

P2=G2 Q1&$b1G2 DG2=G2 Q2 (2.24)

Z(h, h� )=exp[h� P2h] c | Pb1
(d�(�2)) exp[&$b1�� (�2) D� (�2)]

_exp[h� Q2�(�2)+�� (�2) Q2h] exp[&V� 2(�(�2)+G2 h,...)]

Now we renormalize the wavefunction term

Pb1
(d�(�2)) exp[&$b1�� (�2) D�(�2)]=N"Pb2

(d�(�3)) P� b2
(d�2)

where N" is the normalization factor, b2=b1+$b1 , P� b2
, with covariance

b&1
2 g~ 2 given by

g~ 2(x& y)= g2(x& y)+r2(x& y)
(2.25)

r2(x& y)=$b1 |
d 3p

(2?)3 eip(x& y) p3
p2

e&L4p2
&e&2L4p2

b1+$b1 e&L4p2

with

| g~ 2(x& y)|�const. L&2 } 2 exp[&;L&2 |x& y|] (2.26)

$b1 small enough. Hence,

Z(h, h� )=exp[h� P2h] N2 | Pb2
(d�(�3)) P� b2

(d�2)

_exp[h� Q2�(�2)+�� (�2) Q2h] exp[&V� 2(�(�2)+G2 h,...)]
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Iterating, after n steps,

Z(h, h� )=exp[h� P$nh] Nn | Pbn&1
(d�(�n))

_exp[h� Qn&1�(�n)+�� (�n) Qn&1h] exp[&Vn(�(�n)+Gnh,...)]

(2.27)

where

exp[&Vn(�(�n)+Gnh,...)]

=| P� bn&1
(d�n&1) exp[&V� n&1(�(�n)+�n&1+Gnh,...)]

Gn=Gn&1+b&1
n&1 g~ n&1Qn&1 , Qn&1=Qn&2&$bn&2Gn&1 D

P$n=Pn&1+b&1
n&1Qn&1 g~ n&1Qn&1 , Pn&1=Gn&1Qn&1

g~ n&1(x& y)= gn&1(x& y)+rn&1(x& y) (2.28)

rn&1(x& y)=$bn&2 |
d 3p

(2?)3 e ip(x& y) p3
p2

e&L2(n&1)p2
&e&2L2(n&1)p2

bn&2+$bn&2e&L2(n&1)p2 (2.29)

| g~ n&1(x& y)|�const. L&2 } (n&1) exp[&;L&(n&1) |x& y|] (2.30)

Vn above still contains a marginal term in which shall renormalize the
wavefunction (contributing with $bn&1). The kernels of Vn do not present
singularities, and so, the pointwise bounds (to be used later) appear
without further adjustments (more comments in [PP1]). Thus, we keep Vn

in the final step of the generating formula. However, note that for n � �
the difference between Vn and V� n disappears; note also that (following the
formalism construction) Vn depends only on V� n&1 .

Performing the final shift

�(�n) � �(�n)+b&1
n&1 g~ (�n) Qn&1 h, �� (�n) � �� (�n)+b&1

n&1h� Qn&1g~ (�n)

(2.31)

where g~ (�n)= g~ n+ g(�n+1) , we get

Lemma 2.1. For the ``continuous'' fermionic generating function
(2.11) we have

Z(h, h� )=exp[h� P� nh] Nn | Pbn&1
(d�(�n))

_exp[&Vn(�(�n)+G� nh, �� (�n)+h� G� n)] (2.32)
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with

P� n=P$n+b&1
n&1Qn&1 g~ (�n) Qn&1 , G� n=Gn+b&1

n&1 g~ (�n)Qn&1 (2.33)

where n is the number of ``smooth'' RG steps, and P$n , Qn and Gn are given
by Eqs. (2.15), (2.28).

Thus, the truncated correlation functions easily follow (once more, we
supress the spinor indices: the bounds to be presented are valid for any set
of indices :)

S2k(x1 , x2 ,..., x2k)

=$1, k P� n(x1 , x2)&| dy1 ,..., dy2k `
2k

i=1

[G� n(x i , yi)]

_
�

�/� k
} } }

�
�/� 1

Wn
�

�/2k
} } }

�
�/k+1 } /� 1 ,..., /� k , /k+1 ,..., /2k=0

( y1 ,..., y2k) (2.34)

where

exp[&Wn(/, /� )]=
� Pbn&1

(d�(�n)) exp[&Vn(�(�n)+/, �� (�n)+/� )]

numerator with /, /� =0

3. THE TRUNCATED CORRELATION FUNCTION BOUNDS
AND TREE DECAY

In this section, using the obtained multiscale formalism, we study the
k-point truncated function of the tridimensional Gross�Neveu model.
Generally, in similar problems [BGPS, BO, FMRS, FMRT, GK4, IM,
MS] just the two and four-point function are completely controlled (con-
cerning a detailed decay analysis, etc), with comments (integral bounds,
etc) about the general correlations. Here, as a first description, we obtain
bounds which may be improved (still considering the formulas and initial
bounds described), however, the whole description and the final bounds
are already precise enough to show the long distance tree decay for the
truncated correlation functions (and also analyticity on *, the initial poten-
tial strength, etc).

A delicate point now is the bound on the effective potential: we need
a pointwise bound for the kernel K m, a

n ( y1 ,..., yk) (the notation means the
kernel of Vn with 2m fields and a derivatives, at points y1 ,..., yk). A detailed
study of the effective potential flow for the tridimensional Gross�Neveu
model within the smooth RG approach has been carried out (using the
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Gallavotti Nicolo� tree expansion) by two of us in a previous paper [PP1].
We proved the following theorems related to the kernels of the effective
potential at scale n and the flow of the running coupling constants.

Theorem 3.1. For small * ( |*|�=), the effective potential at scale
n, Vn , can be written as

Vn(�, �� )=* |
4

dy(�� y�y)2+|
4

dy1 |
4

dy2K 2, 0
n ( y1& y2) �� y1

�y2

+|
4

dy1 |
4

dy2 K 2, 1
n ( y1& y2) �� y1

�2�y2

+ :
�

m=2

:
m

a=0

:
2m

p=max[m&1+a, 2]
|

4
dy1 } } } |

4
dyp

_ :
r1 ,..., rp&a

:
s1 ,..., sp&a

K m, a, [rj , sj ]
n ( y1 ,..., yp)

_�� r1
y1

} } } �� rp&a
yp&a

�s1
y1

} } } �sp&a
yp&a

�2�yp&a+1
} } } �2�yp

(3.1)

where, for j=1, 2,..., p&a, 0�r j�2. The same for sj . For j=1, 2,..., p&a,
we have 1�rj+sj�3 and � j rj=m, � j sj=m&a.

The kernels K 2, 0
n , K 2, 1

n , K m, a, [rj , sj ]
n are analytic in * (uniformly in 4)

and admit the pointwise bound

|K m, a
n ( y1 ,..., yp)|

= } :
[rj , sj ]

K m, a, [rj , sj ]
n ( y1 ,..., yp) }

�(c |*| ) p :
{ # [1, 2,..., p]

B{ :
n&1

j1=0

} } } :
n&1

jp&1=0

:
:1 ,..., :p&1

L&:1 j1 } } } L&:p&1 jp&1

_e&;L&j1 |l1| } } } e&;L&jp&1 |lp&1| (3.2)

|K 2, 0
n ( y1& y2)|

�c*2L&n :
n&1

j=0

L&6j exp[&;L& j | y1& y2 |] (3.3)

|K 2, 1
n ( y1& y2)|

�c*2 :
n&1

j=0

L&4j exp[&;L& j | y1& y2 |] (3.4)
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where c is a constant; the sum �:1 ,..., :p&1
is over positive integer values of

:j such that, for d=3,

:
p&1

j=1

:j=(d+1) p&[2m(d&1)�2+2a] (3.5)

the sum �{ # [1, 2,..., p] is over all connected tree graphs between y1 , y2 ,..., yp

(thus with p&1 branches l1 ,..., lp&1 , with li= yi1
& y i2

); and B{ are com-
binatorial factors such that �{ B{�c p.

Again, we supressed the spinor indices (the bounds follow for any set
of these indices).

Theorem 3.2. The wavefunction renormalization $bn is analytic in
* (for small *, |*|�=, = a positive constant) and

|$bn |�cnL&2n*2 (3.6)

where c is a positive constant.

Let us make some remarks.

1. The effective potential described in Theorem 3.1 (expressions to be
used in the correlation formulas) does not vanish as n � �: in the case of
the block RG approach where everything is more transparent, this poten-
tial describes the interaction in the unit lattice, and only after rescaled to
``thin'' lattices of spacement 1�Ln they shrink to zero (due to scaling factors
introducing negative powers of Ln).

2. For the block RG approach [PP2], starting with an action with
chiral symmetry (in order to prevent the generation of the relevant massive
term), after dealing with the technical problems due to the lack of transla-
tional invariance, a similar theorem can be established: in the lattice, the
free propagator decomposition gives 1� 0 , 1� 1 ,..., 1� k ,..., with the same bounds
as g~ j , but with |�1� j �

-(x, y)|�cL&(2&=) j exp[&;L& j |x& y|], a factor L j=

worse than |��g~ j |, which slightly changes the sum on :j (3.5) with the
replacement of d+1 by d+1&=, and also change the bound (3.6) with the
replacement of 2n by (2&=) n.

Now, with the bounds obtained from the effective potential study, we
turn to the correlation formulas. First we analyze the propagators Pn and
Gn (the difference between P� n , G� n and Pn , Gn is a correction which vanishes
as n � �, thus, it is enough to consider Pn and Gn).
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As we know from (3.12) in [PP2], for the block RG approach,

Pn= :
n&1

j=0

# (n)
j 1� j , # (n)

j =b&1
j &(bn&bj) b&2

j

|1� j (x, y)|�cL& j(d&1) exp[&;L& j |x& y|]

We write, as n � �,

P�= :
�

j=0

# (�)
j 1� j=b&1

� :
�

j=0

1� j+ :
�

j=0

(# (�)
j &b&1

� ) 1� j#b&1
� D&1+C (3.7)

But b�=b0+��
j=0 $bj O (from Theorem 3.2 above) |b� |�|b0 |+c*2_

��
j=0 L& j(2&=)=|b0 |+O(*2), and # (�)

j &b&1
� =b&1

j &(b�&b j) b&2
j &b&1

�

=&b&1
� ([b�&bj]�bj)

2. Thus,

|C(x, y)|�cb&2
� :

�

j=0

L&(2&=) jL& j(d&1) exp[&;L& j |x& y|]

�cb&2
� �(1+|x& y| )d+1&= (3.8)

that is, subdominant in relation to D&1. For Gn we have

Gn=b&1
n :

n&1

j=0

1� j+ :
n&1

j=0

(b&1
j &b&1

n ) 1� j

and so, as n � �,

G�(x, y)=b&1
� D&1(x, y)+ :

�

j=0

(b&1
j &b&1

� ) 1� j

} :
�

j=0

(b&1
j &b&1

� ) 1� j }�cb&2
� :

�

j=0

L&(2&=) jL& j(d&1) exp[&;L& j |x& y|]

�cb&2
� �(1+|x& y| )d+1&= (3.9)

That is, |G�(x, y)|�b&1
� �(1+|x& y| )d&1+c�(1+|x& y| )d+1&=.

For the smooth RG approach the analysis is more elaborate (due to
the absence of the orthogonality property, which leads to a mix between
scales), but we still obtain

G�(x, y)=b&1
� D&1+C1(x, y), |C1(x, y)|�c�(1+|x& y| )d+1&=

(3.10)
P�(x, y)=b&1

� D&1+C2(x, y), |C2(x, y)|�c�(1+|x& y| )d+1&=
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Let us show it. According to our previous definitions (2.28)

Pn=GnQn , Gn=Gn&1+b&1
n&1 g~ n&1Qn&1 , G0=0, G0=1

Qn=Qn&1&$bn&1 DGn , bn=bn&1+$bn&1

From these formulas, we may write

Gn= :
n&1

j=0

b&1
j g~ j+ :

n&1

j=0

\j , Qn=1+ :
n&1

j=0

Dq (n)
j (3.11)

(where \0=0), which iterates with

\n=b&1
n :

n&1

j=0

g~ n Dq(n)
j

Dq (n+1)
j =Dq (n)

j &$bnb&1
j Dg~ j&$bn D\j , j<n (3.12)

Dq (n+1)
n =&$bnb&1

n Dg~ n&$bn D\n

(\0=0 O Dq (1)
0 =&$b0b&1

0 Dg~ 0). Making explicit all the scales in the expres-
sions above, one can see that \n involves terms (mixing the scales) such as
g~ 1 Dg~ 0 , g~ 2 Dg~ 1 Dg~ 0 , etc., and q (n)

j terms as Dg~ 0 , Dg~ 1 Dg~ 0 , etc. Hence, we have
to know how to control gk Dgj , k> j (since g~ k is essentially given by gk), and
related expressions. From the formula (2.6) for gj we have

gk Dg j (x& y)=|
d 3p

(2?)3

(e&L2kp2
&e&L2k+2p2

)
p2 p3 p3

(e&L2jp2
&e&L2j+2p2

)
p2 p3 eip(x& y)

and making the change of variables Lkp � p

gk Dgj (x& y)=L&2kL&2(k& j)(L2&1) |
d 3p

(2?)3 (e&p2
&e&L2p2

)

_p3 e&L&2(k& j)p2f ( p) eiL&kp(x& y)

with f ( p) dominated by (e&p2
&e&L2p2

). Thus, it follows

| gk Dgj (x& y)|�L&2kL&2(k& j)L2c exp[&;L&k |x& y|]

With estimates like this, using |$bn |�O(*2) nL&2n (Ob�=1+O(*2)), and
the expressions (3.12) for \n and Dq (n)

j above we obtain

|\n(x& y)|�cL&(4&=) n exp[&;L&n |x& y|]
(3.13)

|Dqn+1
j (x& y)|�cn+1L&(5&=) j exp[&;L& j |x& y|]

680 Pereira et al.



(where cn+1<c, for all n) which shows that Gn is dominated by the sum
over g~ j ; Qn by 1; and so, the formulas (3.10) for G� and P� above follow.

For the two point function, besides P� n we still have

| dy1 dy2 G� n(x1 , y1)[�K 2, 1
n �]( y1 , y2) G� n( y2 , x2)

where K 2, 1
n is the kernel of the quadratic irrelevant part of Vn with two

fields and two derivatives (that is why the term �� appears above). Note
that the term K 2, 0

n (see Theorem 3.1) contributes to the two-point function
as O(L&n) D&1(x1 , x2), and so, vanishes as n � �. Using Theorem 3.1, for
the expression above, as n � �, we get the bound (for d=3, and in the
smooth RG approach)

c | dy1 dy2(1+|x1& y1 | )&d (1+| y1& y2 | )&d&1 (1+| y2&x2 | )&d

<c(1+|x1&x2 | )&d+=

where we used |�G�(x& y)|�1�(1+|x& y| )d. For the block RG
approach, using the bounds obtained, we expect

c :
y1 , y2

(1+|x1& y1 | )&d+=$ (1+| y1& y2 | )&d&1+= (1+| y2&x2 | )&d+=$

<c(1+|x1&x2 | )&d+="

Now we argue to show that no more terms contribute, as n � �, for
the two point function (the same analysis follows for the k-point truncated
correlations). In the smooth RG description (Lemma 2.1), the contribution
due to the other parts of Vn with four or more fields keeps two (or more)
fields �(�n) and �� (�n) inside the integral. The integration of such fields
(note that, from �(�n) , we need to separate �n , with covariance g~ n and
�(�n+1) with covariance g(�n+1)) leads to extra terms such as g~ n and
g(�n+1) which go to zero as n goes to infinity. A similar analysis follows
for the block RG mechanism in [PP2].

Turning to the general correlations, for the k point truncated function
Sk(x1 ,..., xk) we have terms such as

| dy1 } } } dyp `
k

i=1

[G� n(xi , yi)] K k, a
n ( y1 ,..., yp) (3.14)

where p�k; p and a assuming the values allowed by Theorem 3.1. Now we
use the previous bounds in order to control these expressions.
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Fig. 1.

From Theorem 3.1, K k, a
n ( y1 ,..., yp) is bounded in terms of trees con-

necting y1 ,..., yp . We first study the simplest tree involving k different
points y1 ,..., yk , which contributes to Sk(x1 ,..., xk) as in Fig. 1, where
G#Gn(x, y), fi# fi ( yi+1& yi) ( fi is the i th branch term in 3.2)

|Gn(x, y)|�b&1
n :

n&1

j=0

L&2j exp[&;L& j |x& y|

�c(1+|x& y| )&2 (3.15)

| fi ( yi+1& yi)|�c :
n&1

j=0

L& j:i exp[&;L& j | yi+1& yi |

�c(1+| yi+1& yi | )
&:i (3.16)

We start the analysis manipulating the expression to ``extract'' a tree decay
on x1 ,..., xk (improvements may be obtained for the interested reader).
Note that the first two points x1 and x2 are connected by links passing
by y1 and y2 (Fig. 2) and that this part of the graph (i.e., the links
[x1 , y1][ y1 , y2][ y2 , x2]) is bounded by

:
j1 , k1 , j2

L& j12L&k1:1L& j22 exp[&;L& j1 |x1& y1 |]

_exp[&;L&k1 | y1& y2 |] exp[&;L& j2 |x2& y2 |]

Fig. 2.
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(times a constant). From the terms in the exponential, we separate a part
(say, 1�4)

;
4

|x1& y1 |
L j1

+
;
4

| y1& y2 |
Lk1

+
;
4

|x2& y2 |
L j2

and taking the largest index, say k1 , we write

;
4 _

1
L j1

&
1

Lk1& |x1& y1 |+
;
4 _

1
L j2

&
1

Lk1& |x2& y2 |

+
;
4

1
Lk1

[ |x1& y1 |+| y1& y2 |+|x2& y2 |]

�
;
4 _

1
L j1

&
1

Lk1& |x1& y1 |+
;
4 _

1
L j2

&
1

Lk1& |x2& y2 |+
;
4

|x1&x2 |
Lk1

From the first three terms involving the powers on L, writing L&k1:1=
L&k1(:1&=)L&k1=, we extract a factor involving L. Thus, after considering
also the regions j1�k1 , j2 and j2�k1 , j1 , simple manipulations lead us to
the bound (for the links [x1& } } } &x2])

3 :
k�

L&k� = exp _&
;
4

|x1&x2 |

Lk� & :
j1 , k1 , j2

L& j1(2&=)L&k1(:1&=)L& j2(2&=)

_exp _&
3
4

;L& j1 |x1& y1 |& exp _&
3
4

;L&k1 | y1& y2 |&
_exp _&

3
4

;L& j2 |x2& y2 |&
The first sum gives a term such as c |x1&x2 |&=. Repeating the procedures
for the link [x2&x3] and following points we may bound the whole graph
G by

const(1+|x1&x2 | )&= (1+|x2&x3 | )&= } } } (1+|xk&1&xk | )&=_G$ (3.17)

where G$ is given by G above with Gn replaced by G$n (G$n given by Gn with
the factor 2 replaced by 2&= and ; by ;$, which is some fraction of ;), and
fi replaced by f $i (which is fi with :i replaced by :i&= and ; by ;$). We
remark that the extraction procedure leads to a tree graph on x1 ,..., xk with
the same structure of the initial graph on y1 ,..., yk . For the case of graphs
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Fig. 3.

associated to kernels involving different fields at the same point, e.g., for G

in Fig. 3, (i.e., the number of x larger than y), repeating the same proce-
dures, we can still bound G by, e.g.,

const. [(1+|x12&x1 | )&= (1+|x13&x1 | )&=]

_(1+|x1&x2 | )&= (1+|x2&x3 | )&= } } } (1+|xk&1&xk | )&=_G$

again, with G$ given by G with the replacements described above (2 by
2&=, ; by ;$). That is, the structure y1& y2& } } } is repeated in
x1&x2& } } } , and the extra fields x connected to y1 are reflected as extra
links in x1 .

Now we estimate G$ for the simple tree of our first case. We shall
bound G$(x1=x2= } } } =xk=0)#G$(0) (since |G$|�|cG$(0)|, with c not
depending on x). We write

|G$(0)|�| `
k&1

i=1

|[G$( yi) f $i ( yi& yi+1)] G$( yk)| dy1 } } } dyk

=| G$( y1)( f $1 V h1)( y1) dy1�&G$ } ( f $1 V h1)&1 (3.18)

where h1=G$ } [ f $2 V [G$ } [ f $3 V [G$ } [ f $4 V } } } ]]]]].
From Ho� lder inequality (we drop, below, the prime out the notations

of G$ and f $)

&G } ( f1 V h1)&1�&G&s & f1 V h1&s1
, s&1+s&1

1 =1, 1�s1 , s��
(3.19)

and from the Young inequality (see [RS])

& f1 V h1 &s1
�& f1 &r1

&h1&p1
, p&1+r&1

1 =1+s&1
1 , 1�p1 , r1 , s1��

(3.20)
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Hence,

&G } ( f1 V h1)&1�&G&s & f1&r1
&h1 &p1

, with p&1+r&1
1 =2&s&1

For h1 ,

&h1&p1
=&G } ( f2 V h2)&p2

�&G&s & f2 V h2&s2
, p&1=s&1+s&1

2

& f2 V h2 &s2
�& f2 &r2

&h2&p2
, s&1

2 +1=r&1
2 + p&1

2

And so,

|G$(0)|�&G&s & f1 &r1
&G&s & f2&r2

&h2&p2
,

with p&1
2 +r&1

2 +r&1
1 =3&2s&1 (3.21)

Iterating

|G$(0)|�&G&s & f1&r1
&G&s & f2 &r2

} } } &G&s & fk&2&rk&2
&hk&2&pk&2

with r&1
1 +r&1

2 + } } } +r&1
k&2+ p&1

k&2=k&1&(k&2) s&1

(3.22)

But

&hk&2&pk&2
=&G } ( fk&1 V G)&pk&2

�&G&s & fk&1 V G&sk&1
, s&1+s&1

k&1= p&1
k&2

& fr&1 V G&sk&1
�& fk&1 &rk&1

&G&s , s&1+r&1
k&1=s&1

k&1+1

And so,

|G$(0)|�&G&s & f1&r1
&G&s & f2 &r2

} } } &G&s & fk&1&rk&1
&G&s

with r&1
1 +r&1

2 + } } } +r&1
k&1=k&ks&1 (3.23)

To obtain a finite bound we need s==$+3�2 (to get &G&s<�) and
(:i&=) ri>3 (to get & fi &ri

<�). Thus, from (3.21) we have the following
condition for the :'s

:
k&1

i=1

:i>(3+=") k(1&(=$+3�2)&1)�k+=~ (3.24)

(=$, =$, =~ <<1), which is easily satisfied for any graph with equal number of
vertices and fields (see Theorem 3.1, Eq. (3.5)).
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In order to generalize the bound (i.e., to control any tree), let us con-
sider more complicated cases. The procedure for the extraction of the decay
on x described above is completely general and follows for any graph (of
course, with the adjustments described before for the graphs related to
kernels with different fields at the same point). Thus, it is enough to bound
|G$(0)|.

First we analyze these graphs associated to kernels involving different
fields at the same point, e.g., the graph of Fig. 3 above. Repeating the pre-
vious analysis,

|G$(0)|�| |[G$( y1)]3 f $1( y1& y2) G$( y2) f $2( y2& y3) } } } G$( yk)| dy1 } } } dyk

�&G$3 } ( f $1 V h1)&1 (3.25)

and so (again, dropping the prime out the notations)

&G3 } ( f1 V h1)&1�&G3&1 & f1 V h1&�

where we used that |G3| is integrable ( |G2| is already integrable), and so,
it is not necessary to take the & }&s . We have

& f1 V h1 &��& f1&r1
&h1&p1

, p&1+r&1
1 =1

Now everything follows as before. We get

|G$(0)|�&G3&1 & f1 &r1
&G&s & f2&r2

} } } & fk&1 &rk&1
&G&s

with r&1
1 +r&1

2 + } } } +r&1
k&1=(k&1)&(k&2) s&1 (3.26)

leading to a ``softer'' condition on the sum over :i ,

:
k&1

i=1

:i>k&1+=~ (3.27)

It is easy to see that, for a graph with two points associated to two (or
more) fields, e.g., Fig. 4, we have

r&1
1 +r&1

2 + } } } +r&1
k&1=(k&2)&(k&3) s&1 O :

k&1

i=1

: i>k&2+=~ (3.28)
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Fig. 4.

and so on. For p~ points carrying two or more fields we have

:
k&1

i=1

:i>k& p~ +=~ (3.29)

that is, it is easier (as expected) to control such graphs.
Now we study a graph with bifurcations, whose analysis will guide us

to the general case. We will show that the bound above is maintained. We
take the graph in Fig. 5, where (once more, dropping the prime out the
notation)

|G$(0)|= } | G(x1) f (x)
1 (x1&x2) G(x2) f (x)

2 (x2&x2) } } } f (x)
k1

(xk1
&x0)

_G( y1) f ( y)
1 ( y1& y2) } } } f ( y)

k2
( yk2

&x0)

_G(x0) f (z)
k (zk&x0) G(zk) f (z)

k&1(zk&1&zk)

_G(zk&1) } } } f (z)
0 (z1&z0) G(z0)

_G(u1) f (u)
1 (u1&u2) G(u2) } } } f (u)

k3
(uk3

&z0)

_G(v1) f (v)
1 (v1&v2) G(v2) } } } f (v)

k4
(vk4

&z0)

_dx0 dx1 } } } dxk1
dy1 } } } dyk2

_dz0 dz1 } } } dzk du1 } } } duk3
dv1 } } } dvk4 }

#| [[[H (x)H ( y)G] V f k
(z)] } G] V } } } V f 0

(z)

H

[GH (u)H (v)] (3.30)
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Fig. 5.

where H (x)(x0)=� G(x1) f (x)
1 } } } G(xk1&1) f (x)

k1
(xk1

&x0) dx1 } } } dxk1
, G and

f defined as before. Hence,

|G$(0)|�&HGH (u)H (v)&1�&H&q &G&s &H (u)&#3
&H (v)&#4

,

1=q&1+s&1+#&1
3 +#&1

4 , i.e., q&1+#&1
3 +#&1

4 =1&s&1

(3.31)

Repeating the previous analysis,

&H&q�&(H (x)H ( y)G) V f (z)
k &q~ &G&s & f (z)

k&1&rk&1
} } } &G&s & f (z)

0 &r0
,

r&1
0 +r&1

1 +r&1
2 + } } } +r&1

k&1+q~ &1=q&1+k&ks&1

We also obtain

&(H (x)H ( y)G) V f (z)
k &q~ �&(H (x)H ( y)G)&#~ & f (z)

k &rk
, r&1

k +#~ &1=q~ &1+1

&(H (x)H ( y)G)&#~ �&H (x)&#1
&H ( y)&#2

&G&s , s&1+#&1
2 +#&1

1 =#~ &1

Again, as analyzed before,

&H (x)&#1
�&G&s & f (x)

1 &r1
x &G&s & f (x)

2 &r2
x } } } &G&s & f (x)

k1
&rx

k1
,

1�rx
1+1�rx

2+ } } } +1�rx
k1

=1�#1+k1&k1 �s

(and similar expressions for H ( y), H (u), H (v)). Thus, it follows

|G$(0)|� `
*vertices

(&G&s) `
*links

(& f &r) (3.32)
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(where * means number of ) with

[1�r0+1�r1+ } } } +1�rk]+[1�rx
1+ } } } +1�rx

k1
]+ } } } +[1�rv

1+ } } } +1�rv
k1

]

=2+k+k1+ } } } +k4&[2+k+k1+ } } } +k4]�s (3.33)

That is, as for the first graph considered above,

:
i

1�ri=(*vertices)&(*vertices)�s (3.34)

where the sum is over all the k&1 links between neighbor vertices (the
links are labeled by i in the expression above), leading to, as in (3.22),

:
k&1

i=1

:i�k+=~ (3.35)

The analysis (and the formula) follows for any kind of tree with one field
per vertice; with more fields we may still get improvements as already
described.

Let us now make a precise statement of the results obtained above.

Theorem 3.3. The truncated correlation functions of the tridimen-
sional Gross�Neveu model (with a smooth U.V. regularizer (2.1)) are given
by (suppressing spinor indices)

S2m(x1 ,..., x2m)

=$1, mP� n(x1 , x2)&| DY `
2m

i=1

[G� n(x i , y i)][�2m
y1 ,..., y2m

Vn](0)+R2m, n

(3.36)

where

[�2m
y1 ,..., y2m

Vn](0)=
�

�/� ( ym)
} } }

�
�/� ( y1)

Vn(/, /� )
�

�/( y2m)
} } }

�
�/( ym+1) }/, /� #0

Vn is the n step effective potential described by Theorem 3.1; R2m, n gives
the contribution of the terms in Vn with more than 2m fields and goes to
zero as 4, n � �, that is, just the kernels of Vn relating 2m fields survive
in the 2m-point function formula with the RG flow (and with the thermo-
dynamic limit). DY above means dy1 } } } dyp , that is, in y1 ,..., y2m there are
only p distint points with p taking values between m&1 and 2m (details in
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Theorem 3.1). Moreover, S2m is analytic in *, the parameter occuring in the
initial interaction: * � dx(�� x�x)2.

Specifically, for the two-point function

S2(x1 , x2)=P� n(x1 , x2)+S� 2(x1 , x2) (3.37)

with

P� �(x1 , x2)=b&1
� D&1(x1 , x2)+C2(x1 , x2)

(3.38)
|C2(x1 , x2)|�c�(1+|x1&x2 | )d+1&=

S� 2(x1 , x2) as n � �, is dominated by c�(1+|x1&x2 | )d&=. In particular,
S2 � D&1 as * � 0 (and the difference S2&D&1 is O(*2)).

For the truncated four-point function, the term of lowest order in * is
given by

* | dy `
4

i=1

G� n(x i , y)

where |G� �(x, y)|�b&1
� D&1(x, y)+c�(1+|x& y| )d+1&= (3.39)

For the general case m�2, we have the bound below with long dis-
tance tree decay

|S2m(x1 ,..., x2m)|�cm :
{ # [1, 2,..., 2m]

B${
1

|l1 | =1
} } }

1
|l2m&1 | =2m&1

(3.40)

with B${ a combinatorial factor such that �{ B${<c$m, where the sum �{ is
over all the tree graphs between 2m points x1 , x2 ,..., x2m , with branches
l1 ,..., l2m&1 (li=1+|x i1

&xi2
| ), and there is =~ >0 such that 0<=i<=~ , for

all i. And S2m depends on * as *m&1 (m�2; and so, rapidly vanishes as
* � 0).

Now, we make some remarks.
The combinatorial factor B${ is directly related to B{ from the effective

potential (Theorem 3.1). In fact, the contribution of Vn to S2m (3.36) con-
siders all the kernels with 2m fields, i.e., it involves several kernels with dif-
ferent values of p (number of points), and different numbers of a (number
of derivatives). From Theorem 3.1, Eq. (3.2), the contribution to the effec-
tive potential of the kernels with 2m fields, p points and a derivatives
involves a sum over trees controlled by the factor B{ (we have �{ B{<cm).
We recall that for each tree in the effective potential we construct only one
tree for the correlation function formula. Hence, to control �{ B${ we just
have to know how many trees in the effective potential (thus, with their
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factors B{) appear with 2m fields. Recall also that, for each graph between
p points in the formula (3.36) (connecting the effective potential and the
correlation function) we have at most 3 p ways to distribute the (2m) fields
among the p points (since we are studying the Gross�Neveu model with
N=1). Thus, we have

:
{

B${� :
m

a=0

:
2m

p=max[m&1+2, 2]

:
r1 ,..., rp&a

:
s1 ,..., sp&a

:
{p

B{p
(m, a, [rj , sj])

� :
m

a=0

:
2m

p=0

c$ p�cm

where rj and sj give us the number of fields in each point (see Theorem 3.1),
and so, their sum is bounded by c p.

A more precise analysis in the extraction of the factors =i shall permit
us to get a condition better than =i<=. Anyway, the bound (3.40) above is
enough to show the long distance polynomial decay of the truncated
correlation functions. And note that (3.38) proves that there is no mass
generation in the tridimensional Gross�Neveu model (small *, N=1).

A similar theorem is expected for the block RG description with minor
changes (see remarks after Theorems 3.1 and 3.2, calculations and com-
ments throughout this section).
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